SOLUTIONS TO CONCEPTS CHAPTER – 1

 $= [MLT^{-1}]$ 1. a) Linear momentum : mv $\frac{1}{T} = [M^0 L^0 T^{-1}]$ b) Frequency c) Pressure : $\frac{\text{Force}}{\text{Area}} = \frac{[\text{MLT}^{-2}]}{[\text{II}^{2}]} = [\text{ML}^{-1}\text{T}^{-2}]$ 2. a) Angular speed $\omega = \theta/t = [M^0 L^0 T^{-1}]$ b) Angular acceleration $\alpha = \frac{\omega}{t} = \frac{M^0 L^0 T^{-2}}{T} = [M^0 L^0 T^{-2}]$ c) Torque τ = F r = [MLT⁻²] [L] = [ML²T⁻²] d) Moment of inertia = Mr² = [M] [L²] = [ML²T⁰] 3. a) Electric field E = F/q = $\frac{MLT^{-2}}{[IT]} = [MLT^{-3}I^{-1}]$ b) Magnetic field B = $\frac{F}{qv} = \frac{MLT^{-2}}{[IT][LT^{-1}]} = [MT^{-2}I^{-1}]$ c) Magnetic permeability $\mu_0 = \frac{B \times 2\pi a}{I} = \frac{MT^{-2}I^{-1}] \times [L]}{[I]} = [MLT^{-2}I^{-2}]$ 4. a) Electric dipole moment P = qI = [IT] × [L] = [LTI] b) Magnetic dipole moment M = IA = [I] $[L^2] [L^2I]$ 5. E = hv where E = energy and v = frequency. h = $\frac{E}{v} = \frac{[ML^2T^{-2}]}{[T^{-1}]}[ML^2T^{-1}]$ 6. a) Specific heat capacity = C = $\frac{Q}{m\Delta T} = \frac{[ML^2T^{-2}]}{[M][K]} = [L^2T^{-2}K^{-1}]$ b) Coefficient of linear expansion = $\alpha = \frac{L_1 - L_2}{L_0 \Delta T} = \frac{[L]}{[L][R]} = [K^{-1}]$ c) Gas constant = R = $\frac{PV}{nT} = \frac{[ML^{-1}T^{-2}][L^3]}{[(mol)][K]} = [ML^2T^{-2}K^{-1}(mol)^{-1}]$ 7. Taking force, length and time as fundamental quantity a) Density = $\frac{m}{V} = \frac{(\text{force/acceleration})}{\text{Volume}} = \frac{[F/LT^{-2}]}{[L^2]} = \frac{F}{L^4T^{-2}} = [FL^{-4}T^2]$ b) Pressure = $F/A = F/L^2 = [FL^{-2}]$ c) Momentum = mv (Force / acceleration) × Velocity = [F / LT⁻²] × [LT⁻¹] = [FT] d) Energy = $\frac{1}{2}$ mv² = $\frac{\text{Force}}{\text{acceleration}} \times (\text{velocity})^2$ $= \left| \frac{\mathsf{F}}{\mathsf{L}\mathsf{T}^{-2}} \right| \times [\mathsf{L}\mathsf{T}^{-1}]^2 = \left| \frac{\mathsf{F}}{\mathsf{L}\mathsf{T}^{-2}\mathsf{I}} \right| \times [\mathsf{L}^2\mathsf{T}^{-2}] = [\mathsf{F}\mathsf{L}]$ 8. $g = 10 \frac{\text{metre}}{\text{sec}^2} = 36 \times 10^5 \text{ cm/min}^2$ The average speed of a snail is 0.02 mile/hr 9. Converting to S.I. units, $\frac{0.02 \times 1.6 \times 1000}{3600}$ m/sec [1 mile = 1.6 km = 1600 m] = 0.0089 ms⁻¹ The average speed of leopard = 70 miles/hr In SI units = 70 miles/hour = $\frac{70 \times 1.6 \times 1000}{3600}$ = 31 m/s

```
10. Height h = 75 cm, Density of mercury = 13600 \text{ kg/m}^3, g = 9.8 \text{ ms}^{-2} then
      Pressure = hfg = 10 \times 10^4 N/m<sup>2</sup> (approximately)
      In C.G.S. Units. P = 10 \times 10^5 dvne/cm<sup>2</sup>
11. In S.I. unit 100 watt = 100 Joule/sec
      In C.G.S. Unit = 10^9 erg/sec
12. 1 micro century = 10^4 \times 100 years = 10^{-4} \times 365 \times 24 \times 60 min
      So, 100 min = 10^5 / 52560 = 1.9 microcentury
13. Surface tension of water = 72 dyne/cm
      In S.I. Unit, 72 dyne/cm = 0.072 N/m
14. K = kl^{a} \omega^{b} where k = Kinetic energy of rotating body and k = dimensionless constant
      Dimensions of left side are,
      K = [ML^2T^{-2}]
      Dimensions of right side are,
      I^{a} = [ML^{2}]^{a}, \omega^{b} = [T^{-1}]^{b}
      According to principle of homogeneity of dimension,
      [ML^{2}T^{-2}] = [ML^{2}T^{-2}] [T^{-1}]^{b}
      Equating the dimension of both sides,
      2 = 2a and -2 = -b \Rightarrow a = 1 and b = 2
15. Let energy E \propto M^{a}C^{b} where M = Mass, C = speed of light
      \Rightarrow E = KM<sup>a</sup>C<sup>b</sup> (K = proportionality constant)
      Dimension of left side
      E = [ML^2T^{-2}]
      Dimension of right side
      M^{a} = [M]^{a}, [C]^{b} = [LT^{-1}]^{b}
      \therefore [ML^2T^{-2}] = [M]^a[LT^{-1}]^b
      \Rightarrow a = 1; b = 2
      So, the relation is E = KMC^2
16. Dimensional formulae of R = [ML^2T^{-3}I^{-2}]
      Dimensional formulae of V = [ML^2T^3I^{-1}]
      Dimensional formulae of I = [I]
      \therefore [ML^2T^3I^{-1}] = [ML^2T^{-3}I^{-2}] [I]
      \Rightarrow V = IR
17. Frequency f = KL^a F^b M^c M = Mass/unit length, L = length, F = tension (force)
      Dimension of f = [T^{-1}]
      Dimension of right side,
      L^{a} = [L^{a}], F^{b} = [MLT^{-2}]^{b}, M^{c} = [ML^{-1}]^{c}
      \therefore [T<sup>-1</sup>] = K[L]<sup>a</sup> [MLT<sup>-2</sup>]<sup>b</sup> [ML<sup>-1</sup>]<sup>c</sup>
      M^{0}L^{0}T^{-1} = KM^{b+c}L^{a+b-c}T^{-2b}
      Equating the dimensions of both sides,
      ∴ b + c = 0
                               ...(1)
      -c + a + b = 0
                               ...(2)
      -2b = -1
                               ...(3)
      Solving the equations we get,
      a = -1, b = 1/2 and c = -1/2
      :. So, frequency f = KL^{-1}F^{1/2}M^{-1/2} = \frac{K}{L}F^{1/2}M^{-1/2} = \frac{K}{L} = \sqrt{\frac{F}{M}}
```

18. a) h = $\frac{2SCos\theta}{\rho rg}$ LHS = [L]Surface tension = S = F/I = $\frac{MLT^{-2}}{I} = [MT^{-2}]$ Density = ρ = M/V = [ML⁻³T⁰] Radius = r = [L], g = $[LT^{-2}]$ RHS = $\frac{2S\cos\theta}{\rho rg} = \frac{[MT^{-2}]}{[ML^{-3}T^{0}][L][LT^{-2}]} = [M^{0}L^{1}T^{0}] = [L]$ LHS = RHS So, the relation is correct b) $v = \sqrt{\frac{p}{p}}$ where v = velocity LHS = Dimension of $v = [LT^{-1}]$ Dimension of p = $F/A = [ML^{-1}T^{-2}]$ Dimension of $\rho = m/V = [ML^{-3}]$ RHS = $\sqrt{\frac{p}{\rho}} = \sqrt{\frac{[ML^{-1}T^{-2}]}{[ML^{-3}]}} = [L^2T^{-2}]^{1/2} = [LT^{-1}]$ So, the relation is correct. c) $V = (\pi pr^4 t) / (8\eta I)$ LHS = Dimension of V = $[L^3]$ Dimension of $p = [ML^{-1}T^{-2}], r^4 = [L^4], t = [T]$ Coefficient of viscosity = $[ML^{-1}T^{-1}]$ RHS = $\frac{\pi \text{pr}^4 t}{8\eta \text{I}} = \frac{[\text{ML}^{-1}\text{T}^{-2}][\text{L}^4][\text{T}]}{[\text{ML}^{-1}\text{T}^{-1}][\text{L}]}$ So, the relation is correct. d) v = $\frac{1}{2\pi} \sqrt{(mgl/l)}$ LHS = dimension of $v = [T^{-1}]$ RHS = $\sqrt{(\text{mgl/I})} = \sqrt{\frac{[M][LT^{-2}][L]}{[M]^2]}} = [T^{-1}]$ LHS = RHS So, the relation is correct. 19. Dimension of the left side = $\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{L}{\sqrt{L^2 - L^2}} = [L^0]$ Dimension of the right side = $\frac{1}{a} \sin^{-1} \left(\frac{a}{x} \right) = [L^{-1}]$ So, the dimension of $\int \frac{dx}{\sqrt{a^2 - x^2}} \neq \frac{1}{a} \sin^{-1} \left(\frac{a}{x}\right)$

So, the equation is dimensionally incorrect.

Important Dimensions and Units :		
Physical quantity	Dimension	SI unit
Force (F)	[M ¹ L ¹ T ⁻²]	newton
Work (W)	$[M^{1}L^{2}T^{-2}]$	joule
Power (P)	$[M^{1}L^{2}T^{-3}]$	watt
Gravitational constant (G)	$[M^{-1}L^{3}T^{-2}]$	N-m ² /kg ²
Angular velocity (ω)	[T ⁻¹]	radian/s
Angular momentum (L)	$[M^{1}L^{2}T^{-1}]$	kg-m²/s
Moment of inertia (I)	[M ¹ L ²]	kg-m ²
Torque (τ)	$[M^{1}L^{2}T^{-2}]$	N-m
Young's modulus (Y)	$[M^{1}L^{-1}T^{-2}]$	N/m ²
Surface Tension (S)	[M ¹ T ⁻²]	N/m
Coefficient of viscosity (η)	$[M^{1}L^{-1}T^{-1}]$	N-s/m ²
Pressure (p)	$[M^{1}L^{-1}T^{-2}]$	N/m ² (Pascal)
Intensity of wave (I)	[M ¹ T ⁻³]	watt/m ²
Specific heat capacity (c)	$[L^2T^{-2}K^{-1}]$	J/kg-K
Stefan's constant (σ)	$[M^{1}T^{-3}K^{-4}]$	watt/m ² -k ⁴
Thermal conductivity (k)	$[M^{1}L^{1}T^{-3}K^{-1}]$	watt/m-K
Current density (j)	[l ¹ L ⁻²]	ampere/m ²
Electrical conductivity (σ)	$[I^2T^3M^{-1}L^{-3}]$	$\Omega^{-1} \text{ m}^{-1}$
Electric dipole moment (p)	$[L^{1}I^{T}T^{1}]$	C-m
Electric field (E)	$[M^{1}L^{1}l^{-1}T^{-3}]$	V/m
Electrical potential (V)	$[M^{1}L^{2}I^{-1}T^{-3}]$	volt
Electric flux (Ψ)	[M ¹ T ³ I ⁻¹ L ⁻³]	volt/m
Capacitance (C)	$[I^2T^4M^{-1}L^{-2}]$	farad (F)
Permittivity (ε)	$[l^2T^4M^{-1}L^{-3}]$	C ² /N-m ²
Permeability (μ)	$[M^{1}L^{1}l^{-2}T^{-3}]$	Newton/A ²
Magnetic dipole moment (M)	[l ¹ L ²]	N-m/T
Magnetic flux (ø)	$[M^{1}L^{2}I^{-1}T^{-2}]$	Weber (Wb)
Magnetic field (B)	$[M^{1}l^{-1}T^{-2}]$	tesla
Inductance (L)	$[M^{1}L^{2}I^{-2}T^{-2}]$	henry
Resistance (R)	$[M^{1}L^{2}l^{-2}T^{-3}]$	ohm (Ω)

* * * *