SOLUTIONS TO CONCEPTS CHAPTER – 2

1. As shown in the figure,

The angle between \vec{A} and $\vec{B} = 110^{\circ} - 20^{\circ} = 90^{\circ}$ $|\vec{A}| = 3 \text{ and } |\vec{B}| = 4\text{m}$ Resultant $R = \sqrt{A^2 + B^2 + 2AB\cos\theta} = 5 \text{ m}$ Let β be the angle between \vec{R} and \vec{A} $\beta = \tan^{-1} \left(\frac{4\sin 90^{\circ}}{3 + 4\cos 90^{\circ}} \right) = \tan^{-1} (4/3) = 53^{\circ}$ \therefore Resultant vector makes angle $(53^{\circ} + 20^{\circ}) = 73^{\circ}$ with x-axis.

- 2. Angle between \vec{A} and \vec{B} is $\theta = 60^{\circ} 30^{\circ} = 30^{\circ}$ $|\vec{A}|$ and $|\vec{B}| = 10$ unit $R = \sqrt{10^2 + 10^2 + 2.10.10.\cos 30^{\circ}} = 19.3$ β be the angle between \vec{R} and \vec{A} $\beta = \tan^{-1} \left(\frac{10\sin 30^{\circ}}{10 + 10\cos 30^{\circ}}\right) = \tan^{-1} \left(\frac{1}{2 + \sqrt{3}}\right) = \tan^{-1} (0.26795) = 15^{\circ}$ \therefore Resultant makes $15^{\circ} + 30^{\circ} = 45^{\circ}$ angle with x-axis.
- 3. x component of $\vec{A} = 100 \cos 45^\circ = 100/\sqrt{2}$ unit x component of $\vec{B} = 100 \cos 135^\circ = 100/\sqrt{2}$ x component of $\vec{C} = 100 \cos 315^\circ = 100/\sqrt{2}$ Resultant x component = $100/\sqrt{2} - 100/\sqrt{2} + 100/\sqrt{2} = 100/\sqrt{2}$ y component of $\vec{A} = 100 \sin 45^\circ = 100/\sqrt{2}$ unit y component of $\vec{B} = 100 \sin 135^\circ = 100/\sqrt{2}$ y component of $\vec{C} = 100 \sin 315^\circ = -100/\sqrt{2}$ Resultant y component = $100/\sqrt{2} + 100/\sqrt{2} - 100/\sqrt{2} = 100/\sqrt{2}$ Resultant = 100Tan $\alpha = \frac{y \text{ component}}{x \text{ component}} = 1$ $\Rightarrow \alpha = \tan^{-1}(1) = 45^\circ$

The resultant is 100 unit at 45° with x-axis.

4.
$$\vec{a} = 4\vec{i} + 3\vec{j}$$
, $\vec{b} = 3\vec{i} + 4\vec{j}$
a) $|\vec{a}| = \sqrt{4^2 + 3^2} = 5$
b) $|\vec{b}| = \sqrt{9 + 16} = 5$
c) $|\vec{a} + \vec{b}| = |7\vec{i} + 7\vec{j}| = 7\sqrt{2}$
d) $\vec{a} - \vec{b} = (-3 + 4)\hat{i} + (-4 + 3)\hat{j} = \hat{i} - \hat{j}$
 $|\vec{a} - \vec{b}| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$.

- 5. x component of $\overrightarrow{OA} = 2\cos 30^\circ = \sqrt{3}$
 - x component of $\overrightarrow{\text{DE}}$ = 1.5 cos 120° = -0.75 x component of $\overrightarrow{\text{DE}}$ = 1 cos 270° = 0 y component of $\overrightarrow{\text{OA}}$ = 2 sin 30° = 1 y component of $\overrightarrow{\text{BC}}$ = 1.5 sin 120° = 1.3 y component of $\overrightarrow{\text{DE}}$ = 1 sin 270° = -1 R_x = x component of resultant = $\sqrt{3}$ - 0.75 + 0 = 0.98 m R_y = resultant y component = 1 + 1.3 - 1 = 1.3 m So, R = Resultant = 1.6 m If it makes and angle α with positive x-axis Tan α = $\frac{y \text{ component}}{x \text{ component}}$ = 1.32 $\Rightarrow \alpha$ = tan⁻¹ 1.32
- 6. $|\vec{a}| = 3m |\vec{b}| = 4$
 - a) If R = 1 unit $\Rightarrow \sqrt{3^2 + 4^2 + 2.3.4.\cos\theta} = 1$ $\theta = 180^{\circ}$
 - b) $\sqrt{3^2 + 4^2 + 2.3.4.\cos\theta} = 5$ $\theta = 90^\circ$
 - c) $\sqrt{3^2 + 4^2 + 2.3.4.\cos\theta} = 7$ $\theta = 0^\circ$ Angle between them is 0°.
- 7. $\overrightarrow{AD} = 2\hat{i} + 0.5\hat{J} + 4\hat{K} = 6\hat{i} + 0.5\hat{j}$ $AD = \sqrt{AE^2 + DE^2} = 6.02 \text{ KM}$ $Tan \theta = DE / AE = 1/12$ $\theta = tan^{-1} (1/12)$

The displacement of the car is 6.02 km along the distance $\tan^{-1}(1/12)$ with positive x-axis.

- 8. In $\triangle ABC$, $\tan \theta = x/2$ and $\ln \triangle DCE$, $\tan \theta = (2 x)/4 \tan \theta = (x/2) = (2 x)/4 = 4x$ $\Rightarrow 4 - 2x = 4x$ $\Rightarrow 6x = 4 \Rightarrow x = 2/3$ ft a) $\ln \triangle ABC$, $AC = \sqrt{AB^2 + BC^2} = \frac{2}{3}\sqrt{10}$ ft b) $\ln \triangle CDE$, DE = 1 - (2/3) = 4/3 ft CD = 4 ft. So, $CE = \sqrt{CD^2 + DE^2} = \frac{4}{3}\sqrt{10}$ ft c) $\ln \triangle AGE$, $AE = \sqrt{AG^2 + GE^2} = 2\sqrt{2}$ ft. 9. Here the displacement vector $\vec{r} = 7\hat{i} + 4\hat{j} + 3\hat{k}$ a) magnitude of displacement = $\sqrt{74}$ ft
 - b) the components of the displacement vector are 7 ft, 4 ft and 3 ft.

- 10. \vec{a} is a vector of magnitude 4.5 unit due north.
 - a) $3|\vec{a}| = 3 \times 4.5 = 13.5$

 $3 \,\overline{a}$ is along north having magnitude 13.5 units.

- b) $-4|\vec{a}| = -4 \times 1.5 = -6$ unit -4 \vec{a} is a vector of magnitude 6 unit due south.
- 11. |ā|=2m, |b̄|=3m

angle between them θ = 60°

a)
$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos 60^\circ = 2 \times 3 \times 1/2 = 3 \text{ m}^2$$

b)
$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \sin 60^\circ = 2 \times 3 \times \sqrt{3/2} = 3\sqrt{3} \text{ m}^2.$$

12. We know that according to polygon law of vector addition, the resultant of these six vectors is zero.

Here A = B = C = D = E = F (magnitude)
So, Rx = A
$$\cos\theta$$
 + A $\cos \pi/3$ + A $\cos 2\pi/3$ + A $\cos 3\pi/3$ + A $\cos 4\pi/4$
A $\cos 5\pi/5 = 0$
[As resultant is zero. X component of resultant R_x = 0]
= $\cos \theta + \cos \pi/3 + \cos 2\pi/3 + \cos 3\pi/3 + \cos 4\pi/3 + \cos 5\pi/3 = 0$

Note : Similarly it can be proved that,

$$\sin \theta + \sin \pi/3 + \sin 2\pi/3 + \sin 3\pi/3 + \sin 4\pi/3 + \sin 5\pi/3 = 0$$

13 $\vec{a} - 2\vec{i} + 3\vec{i} + 4\vec{k} \cdot \vec{b} - 3\vec{i} + 4\vec{i} + 5\vec{k}$

$$\vec{a} \cdot \vec{b} = ab\cos\theta \implies \theta = \cos^{-1}\frac{\vec{a} \cdot \vec{b}}{ab}$$
$$\implies \cos^{-1}\frac{2 \times 3 + 3 \times 4 + 4 \times 5}{\sqrt{2^2 + 3^2 + 4^2}\sqrt{3^2 + 4^2 + 5^2}} = \cos^{-1}\left(\frac{38}{\sqrt{1450}}\right)$$

14.
$$\vec{A} \cdot (\vec{A} \times \vec{B}) = 0$$
 (claim)

As,
$$\vec{A} \times \vec{B} = AB \sin \theta \hat{n}$$

AB sin θ \hat{n} is a vector which is perpendicular to the plane containing \vec{A} and \vec{B} , this implies that it is also perpendicular to \vec{A} . As dot product of two perpendicular vector is zero.

Thus
$$\vec{A} \cdot (\vec{A} \times \vec{B}) = 0$$
.

15.
$$\vec{A} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$
, $\vec{B} = 4\hat{i} + 3\hat{j} + 2\hat{k}$
 $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 4 & 3 & 2 \end{vmatrix} \Rightarrow \hat{i}(6 - 12) - \hat{j}(4 - 16) + \hat{k}(6 - 12) = -6\hat{i} + 12\hat{j} - 6\hat{k}$.

16. Given that \vec{A} , \vec{B} and \vec{C} are mutually perpendicular

 \vec{A} × \vec{B} is a vector which direction is perpendicular to the plane containing \vec{A} and \vec{B} .

Also \vec{C} is perpendicular to \vec{A} and \vec{B}

 \therefore Angle between \vec{C} and $\vec{A} \times \vec{B}$ is 0° or 180° (fig.1)

So,
$$\vec{C} \times (\vec{A} \times \vec{B}) = 0$$

The converse is not true.

For example, if two of the vector are parallel, (fig.2), then also

$$\vec{C} \times (\vec{A} \times \vec{B}) = 0$$

So, they need not be mutually perpendicular.

17. The particle moves on the straight line $\mbox{PP}{}^{\prime}$ at speed v.

From the figure,

 $\overrightarrow{OP} \times v = (OP)v \sin \theta \hat{n} = v(OP) \sin \theta \hat{n} = v(OQ) \hat{n}$

It can be seen from the figure, OQ = OP sin θ = OP' sin θ '

So, whatever may be the position of the particle, the magnitude and direction of $\overrightarrow{OP} \times \vec{v}$ remain constant.

- $\therefore \overrightarrow{OP} \times \vec{v}$ is independent of the position P.
- 18. Give $\vec{F} = q\vec{E} + q(\vec{v} \times \vec{B}) = 0$

$$\Rightarrow \vec{\mathsf{E}} = -(\vec{\mathsf{v}} \times \vec{\mathsf{B}})$$

So, the direction of $\vec{v} \times \vec{B}$ should be opposite to the direction of \vec{E} . Hence, \vec{v} should be in the positive yz-plane.

Again, E = vB sin
$$\theta \Rightarrow$$
 v = $\frac{E}{B \sin \theta}$

For v to be minimum, θ = 90° and so v_{min} = F/B

So, the particle must be projected at a minimum speed of E/B along +ve z-axis (θ = 90°) as shown in the figure, so that the force is zero.

19. For example, as shown in the figure,

$A \perp B$	B along west
B ⊥Ĉ	Ā along south
	C along north

$$\vec{A} \cdot \vec{B} = 0$$
 \therefore $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{C}$

$$\vec{B} \cdot \vec{C} = 0$$
 But $\vec{B} \neq \vec{C}$

20. The graph $y = 2x^2$ should be drawn by the student on a graph paper for exact results.

To find slope at any point, draw a tangent at the point and extend the line to meet x-axis. Then find tan θ as shown in the figure.

It can be checked that,

Slope =
$$\tan \theta = \frac{dy}{dx} = \frac{d}{dx}(2x^2) = 4x$$

Where x = the x-coordinate of the point where the slope is to be measured.

21. y = sinx

So,
$$y + \Delta y = \sin (x + \Delta x)$$

 $\Delta y = \sin (x + \Delta x) - \sin x$
 $= \left(\frac{\pi}{3} + \frac{\pi}{100}\right) - \sin \frac{\pi}{3} = 0.0157.$

22. Given that, i = $i_0 e^{-t/RC}$

$$\therefore \text{ Rate of change of current} = \frac{di}{dt} = \frac{d}{dt}i_0e^{-i/RC} = i_0\frac{d}{dt}e^{-t/RC} = \frac{-i_0}{RC} \times e^{-t/RC}$$

When a) t = 0,
$$\frac{di}{dt} = \frac{-i}{RC}$$

b) when t = RC, $\frac{di}{dt} = \frac{-i}{RCe}$
c) when t = 10 RC, $\frac{di}{dt} = \frac{-i_0}{RCe^{10}}$

C

Ē

23. Equation i = $i_0 e^{-t/RC}$

$$\begin{split} &i_0 = 2A, \, R = 6 \times 10^{-5} \, \Omega, \, C = 0.0500 \times 10^{-6} \, F = 5 \times 10^{-7} \, F \\ &a) \ i = 2 \times e^{\left(\frac{-0.3}{6 \times 0^3 \times 5 \times 10^{-7}}\right)} = 2 \times e^{\left(\frac{-0.3}{0.3}\right)} = \frac{2}{e} amp \, . \\ &b) \ \frac{di}{dt} = \frac{-i_0}{RC} e^{-t/RC} \ \text{when } t = 0.3 \, \text{sec} \Rightarrow \frac{di}{dt} = -\frac{2}{0.30} e^{(-0.3/0.3)} = \frac{-20}{3e} \, \text{Amp/sec} \\ &c) \ \text{At } t = 0.31 \, \text{sec}, \, i = 2 e^{(-0.3/0.3)} = \frac{5.8}{3e} \, \text{Amp} \, . \end{split}$$

24. $y = 3x^2 + 6x + 7$

 \therefore Area bounded by the curve, x axis with coordinates with x = 5 and x = 10 is given by,

Area =
$$\int_{0}^{y} dy = \int_{0}^{10} (3x^{2} + 6x + 7)dx = 3\frac{x^{3}}{3} \Big]_{0}^{10} + 5\frac{x^{2}}{3} \Big]_{0}^{10} + 7x \Big]_{0}^{10} = 1135 \text{ sq.units.}$$

25. Area = $\int_{0}^{y} dy = \int_{0}^{\pi} \sin x dx = -[\cos x]_{0}^{\pi} = 2$

26. The given function is $y = e^{-x}$

٧

When
$$x = 0$$
, $y = e^{-0} = 1$

x increases, y value deceases and only at $x = \infty$, y = 0.

x

So, the required area can be found out by integrating the function from 0 to $\infty.$

So, Area =
$$\int_{0}^{\infty} e^{-x} dx = -[e^{-x}]_{0}^{\infty} = 1.$$

v = sinx

27. $\rho = \frac{\text{mass}}{\text{length}} = a + bx$

- a) S.I. unit of 'a' = kg/m and SI unit of 'b' = kg/m² (from principle of homogeneity of dimensions)
- b) Let us consider a small element of length 'dx' at a distance x from the origin as shown in the figure.

$$\therefore$$
 dm = mass of the element = ρ dx = (a + bx) dx

So, mass of the rod = m =
$$\int dm = \int_{0}^{L} (a + bx)dx = \left[ax + \frac{bx^2}{2}\right]_{0}^{L} = aL + \frac{bL^2}{2}$$

28.
$$\frac{dp}{dt} = (10 \text{ N}) + (2 \text{ N/S})t$$

momentum is zero at t = 0

 \therefore momentum at t = 10 sec will be

$$\int_{0}^{p} dp = \int_{0}^{10} 10 dt + \int_{0}^{10} (2t dt) = 10t \Big]_{0}^{10} + 2 \frac{t^{2}}{2} \Big]_{0}^{10} = 200 \text{ kg m/s}$$

29. The change in a function of y and the independent variable x are related as $\frac{dy}{dx} = x^2$.

 \Rightarrow dy = x² dx

Taking integration of both sides,

$$\int dy = \int x^2 dx \implies y = \frac{x^3}{3} + c$$

 \therefore y as a function of x is represented by y = $\frac{x^3}{3}$ + c.

- 30. The number significant digits
 - a) 1001 No.of significant digits = 4
 - b) 100.1 No.of significant digits = 4
 - c) 100.10 No.of significant digits = 5
 - d) 0.001001 No.of significant digits = 4
- 31. The metre scale is graduated at every millimeter.
 - 1 m = 100 mm

The minimum no.of significant digit may be 1 (e.g. for measurements like 5 mm, 7 mm etc) and the maximum no.of significant digits may be 4 (e.g.1000 mm)

So, the no.of significant digits may be 1, 2, 3 or 4.

32. a) In the value 3472, after the digit 4, 7 is present. Its value is greater than 5.

So, the next two digits are neglected and the value of 4 is increased by 1.

: value becomes 3500

- b) value = 84
- c) 2.6
- d) value is 28.
- 33. Given that, for the cylinder

Length = I = 4.54 cm, radius = r = 1.75 cm

Volume = $\pi r^2 I = \pi \times (4.54) \times (1.75)^2$

Since, the minimum no.of significant digits on a particular term is 3, the result should have 3 significant digits and others rounded off.

So, volume V = $\pi r^2 l$ = (3.14) × (1.75) × (1.75) × (4.54) = 43.6577 cm³

Since, it is to be rounded off to 3 significant digits, V = 43.7 cm³.

34. We know that,

Average thickness =
$$\frac{2.17 + 2.17 + 2.18}{3}$$
 = 2.1733 mm

Rounding off to 3 significant digits, average thickness = 2.17 mm.

35. As shown in the figure,

Actual effective length = (90.0 + 2.13) cm

But, in the measurement 90.0 cm, the no. of significant digits is only 2.

So, the addition must be done by considering only 2 significant digits of each measurement.

So, effective length = 90.0 + 2.1 = 92.1 cm.

* * * *