SOLUTIONS TO CONCEPTS CHAPTER – 4

1. m = 1 gm = 1/1000 kg

$$F = 6.67 \times 10^{-17} \text{ N} \Rightarrow F = \frac{\text{Gm}_1\text{m}_2}{r^2}$$

$$\therefore 6.67 \times 20^{-17} = \frac{6.67 \times 10^{-11} \times (1/1000) \times (1/1000)}{r^2}$$

$$\Rightarrow r^2 = \frac{6.67 \times 10^{-11} \times 10^{-6}}{6.64 \times 10^{-17}} = \frac{10^{-17}}{10^{-17}} = 1$$

$$\Rightarrow$$
 r = $\sqrt{1}$ = 1 metre.

So, the separation between the particles is 1 m.

- A man is standing on the surface of earth The force acting on the man = mg(i) Assuming that, m = mass of the man = 50 kg And g = acceleration due to gravity on the surface of earth = 10 m/s² W = mg = 50× 10= 500 N = force acting on the man So, the man is also attracting the earth with a force of 500 N
- 3. The force of attraction between the two charges

$$= \frac{1}{4\pi\epsilon_{o}} \frac{q_{1}q_{2}}{r^{2}} = 9 \times 10^{9} \frac{1}{r^{2}}$$

The force of attraction is equal to the weight

$$Mg = \frac{9 \times 10^9}{r^2}$$

$$\Rightarrow r^2 = \frac{9 \times 10^9}{m \times 10} = \frac{9 \times 10^8}{m}$$
 [Taking g=10 m/s²]

$$\Rightarrow r = \sqrt{\frac{9 \times 10^8}{m}} = \frac{3 \times 10^4}{\sqrt{m}} \text{ mt}$$

For example, Assuming m= 64 kg,

r =
$$\frac{3 \times 10^4}{\sqrt{64}} = \frac{3}{8} 10^4$$
 = 3750 m

- 4. mass = 50 kg
 - r = 20 cm = 0.2 m

$$F_{G} = G \frac{m_{1}m_{2}}{r^{2}} = \frac{6.67 \times 10^{-11} \times 2500}{0.04}$$

Coulomb's force $F_{C} = \frac{1}{4\pi\varepsilon_{0}} \frac{q_{1}q_{2}}{r^{2}} = 9 \times 10^{9} \frac{q^{2}}{0.04}$

- -- - 11 ----

Since,
$$F_G = F_c = \frac{6.7 \times 10^{-11} \times 2500}{0.04} = \frac{9 \times 10^9 \times q^2}{0.04}$$

$$\Rightarrow q^2 = \frac{6.7 \times 10^{-11} \times 2500}{0.04} = \frac{6.7 \times 10^{-9}}{9 \times 10^9} \times 25$$

$$= 18.07 \times 10^{-18}$$

q =
$$\sqrt{18.07 \times 10^{-18}}$$
 = 4.3 × 10⁻⁹ C.

Chapter-4

5. The limb exerts a normal force 48 N and frictional force of 20 N. Resultant magnitude of the force,

$$R = \sqrt{(48)^2 + (20)^2}$$
$$= \sqrt{2304 + 400}$$
$$= \sqrt{2704}$$

6. The body builder exerts a force = 150 N.
 Compression x = 20 cm = 0.2 m
 ∴ Total force exerted by the man = f = kx

$$\Rightarrow$$
 k = $\frac{150}{0.2}$ = $\frac{1500}{2}$ = 750 N/m

Suppose the height is h.
 At earth station F = GMm/R²
 M = mass of earth

R = Radius of earth
F=
$$\frac{GMm}{(R+h)^2} = \frac{GMm}{2R^2}$$

 $\Rightarrow 2R^2 = (R+h)^2 \Rightarrow R^2 - h^2 - 2Rh = 0$
 $\Rightarrow h^2 + 2Rh - R^2 = 0$
H = $\frac{\left(-2R \pm \sqrt{4R^2 + 4R^2}\right)}{2} = \frac{-2R \pm 2\sqrt{2R}}{2}$
 $= -R \pm \sqrt{2R} = R\left(\sqrt{2} - 1\right)$
 $= 6400 \times (0.414)$

8. Two charged particle placed at a sehortion 2m. exert a force of 20m.

$$\begin{aligned} F_1 &= 20 \text{ N.} & r_1 = 20 \text{ cm} \\ F_2 &= ? & r_2 = 25 \text{ cm} \end{aligned}$$

Since, $F &= \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$, $F \propto \frac{1}{r^2}$
$$\frac{F_1}{F_2} &= \frac{r_2^2}{r_1^2} \Rightarrow F_2 = F_1 \times \left(\frac{r_1}{r_2}\right)^2 = 20 \times \left(\frac{20}{25}\right)^2 = 20 \times \frac{16}{25} = \frac{64}{5} = 12.8 \text{ N} = 13 \text{ N.} \end{aligned}$$

9. The force between the earth and the moon, F= G $\frac{m_m m_c}{r^2}$

$$\mathsf{F} = \frac{6.67 \times 10^{-11} \times 7.36 \times 10^{22} \times 6 \times 10^{24}}{(3.8 \times 10^8)^2} = \frac{6.67 \times 7.36 \times 10^{35}}{(3.8)^2 \times 10^{16}}$$
$$= 20.3 \times 10^{19} = 2.03 \times 10^{20} \,\mathsf{N} = 2 \times 10^{20} \,\mathsf{N}$$

$$= 20.3 \times 10^{19} = 2.03 \times 10^{20} \text{ N} = 2 \times 10^{19} \text{ Channel on proton}$$

10. Charge on proton = 1.6×10^{-1}

$$\therefore F_{electrical} = \frac{1}{4\pi\epsilon_o} \times \frac{q_1q_2}{r^2} = \frac{9 \times 10^9 \times (1.6)^2 \times 10^{-38}}{r^2}$$

mass of proton = 1.732 × 10⁻²⁷ kg

$$F_{gravity} = G \frac{m_1 m_2}{r^2} = \frac{6.67 \times 10^{-11} \times (1.732) \times 10^{-54}}{r^2}$$
$$\frac{F_e}{F_g} = \frac{\frac{9 \times 10^9 \times (1.6)^2 \times 10^{-38}}{r^2}}{\frac{6.67 \times 10^{-11} \times (1.732) \times 10^{-54}}{r^2}} = \frac{9 \times (1.6)^2 \times 10^{-29}}{6.67 (1.732)^2 10^{-65}} = 1.24 \times 10^{36}$$

11. The average separation between proton and electron of Hydrogen atom is $r = 5.3 \ 10^{-11}$ m.

a) Coulomb's force = F = 9 × 10⁹ ×
$$\frac{q_1q_2}{r^2} = \frac{9 \times 10^9 \times (1.0 \times 10^{-19})^2}{(5.3 \times 10^{-11})^2} = 8.2 \times 10^{-8} \text{ N}.$$

b) When the average distance between proton and electron becomes 4 times that of its ground state

Coulomb's force F =
$$\frac{1}{4\pi\epsilon_o} \times \frac{q_1q_2}{(4r)^2} = \frac{9\times10^9\times(1.6\times10^{-19})^2}{16\times(5.3)^2\times10^{-22}} = \frac{9\times(1.6)^2}{16\times(5.3)^2}\times10^{-7}$$

= 0.0512 × 10⁻⁷ = 5.1 × 10⁻⁹ N.

12. The geostationary orbit of earth is at a distance of about 36000km. We know that, g' = GM / $(R+h)^2$ At h = 36000 km. g' = GM / $(36000+6400)^2$ g` 6400×6400 256

$$\therefore \frac{g}{10} = \frac{6400 \times 6400}{1000} = \frac{256}{1000} = 0.0227$$

- g 42400×42400 106×106
- \Rightarrow g' = 0.0227 × 9.8 = 0.223

[taking g = 9.8 m/s² at the surface of the earth]

- A 120 kg equipment placed in a geostationary satellite will have weight
- Mg` = 0.233 × 120 = 26.79 = 27 N

* * * *