CHAPTER – 25
CALORIMETRY

1. Mass of aluminium = 0.5kg, Mass of water = 0.2 kg
Mass of Iron = 0.2 kg Temp. of aluminium and water = 20°C = 297°k
Sp heat of Iron = 100°C = 373°k. Sp heat of aluminium = 910J/kg-k
Sp heat of Iron = 470J/kg-k Sp heat of water = 4200J/kg-k

Heat gain = 0.5 × 910(T – 293) + 0.2 × 4200 × (343 –T)
= (T – 292) (0.5 × 910 + 0.2 × 4200) Heat lost = 0.2 × 470 × (373 – T)

∴ Heat gain = Heat lost
⇒ (T – 292) (0.5 × 910 + 0.2 × 4200) = 0.2 × 470 × (373 – T)
⇒ (T – 293) (455 + 8400) = 49(373 – T)
⇒ (T – 293) × 94 = 373 – T
⇒ T = \frac{4475}{15} = 298 k
∴ T = 298 – 273 = 25°C. The final temp = 25°C.

2. mass of Iron = 100g water Eq of calorimeter = 10g
mass of water = 240g Let the Temp. of surface = 0°C
S_{iron} = 470J/kg°C Total heat gained = Total heat lost.

So, \frac{100}{1000} × 470 × (\theta – 60) = \frac{250}{1000} × 4200 × (60 – 20)
⇒ 47\theta – 47 × 60 = 25 × 42 × 40
⇒ \theta = 4200 + \frac{2820}{47} = \frac{44820}{47} = 953.61°C

3. The temp. of A = 12°C The temp. of B = 19°C
The temp. of C = 28°C The temp of ⇒ A + B = 16°
The temp. of ⇒ B + C = 23°

In accordance with the principle of calorimetry when A & B are mixed
M_{CA} (16 – 12) = M_{CB} (19 – 16) ⇒ CA4 = CB3 ⇒ CA = \frac{3}{4} CB \quad \ldots(1)

And when B & C are mixed
M_{CB} (23 – 19) = M_{CC} (28 – 23) ⇒ 4CB = 5CC ⇒ CC = \frac{4}{5} CB \quad \ldots(2)

When A & c are mixed, if T is the common temperature of mixture
M_{CA} (T – 12) = M_{CC} (28 – T)
⇒ \left(\frac{3}{4} \right) CB(T – 12) = \left(\frac{4}{5} \right) CB(28 – T)
⇒ 15T – 180 = 448 – 16T
⇒ T = \frac{628}{31} = 20.258°C = 20.3°C
